Tungsten carbide is a compound renowned for its exceptional hardness, wear resistance, and high-temperature strength[1][7]. These properties make it an ideal material for various industrial applications, including cutting tools, and molds[2][5]. However, its inherent hardness and brittleness pose significant challenges in machining[7]. This article explores the various techniques and processes involved in machining tungsten carbide, providing a comprehensive guide for achieving precision and quality in the final product[1].